一十二時三十二分,實行相距三十四度二十三分二十二秒,平行相距四十度三十九分二十五秒;第二次距第三次七百六十八日一十八時,實行相距三十七度三十八分,平行相距四十二度五十二分三十五秒。用不同心圈取平三角形,推得兩心差,為本天半徑千萬分之一百八十五萬五千,析為本輪半徑一百四十八萬四千,均輪半徑三十七萬一千。又推得萬曆二十八年最高在鶉火宮二十八度五十九分二十四秒,每年最高行一分零七秒。本法仍之。
一,求火星次輪半徑以定順逆。西人第谷累年密測,於太陽、火星同在最卑時,測得次輪最小之半徑,為本天半徑千萬分之六百三十萬二千七百五十;又於太陽在最卑火星在最高時,測得次輪半徑六百五十六萬一千二百五十;與最小半徑相較,為本天高卑之大差。又於火星在最卑、太陽在最高時,測得次輪半徑六百五十三萬七千七百五十,與最小半徑相較,為太陽高卑之大差。乃用比例求得火星逐時次輪半徑。本法仍之。定諸輪左、右旋起數及輪面如土、木星。
一,求金星平行度。古測定二千九百一十九日又千分日之六百六十七,金星行次輪會日退合日各五次。置中積日分為實,星行次輪週數五為法,除之得周率。以每週三百六十度為實,周率除之,得每日金星在次輪周平行,一名伏見行。其本輪心平行,即太陽平行。本法仍之。
一,求金星最高及本輪均輪半徑以定盈縮。明萬曆十三年,西人第谷於晨夕時,逐日累測金星,得距太陽極遠度,晨夕相等,定兩平行距高卑、左右度亦等。以兩平行宮度相加折半,即最高或最卑線所當宮度。又擇晨夕時距太陽極遠度相較,定小度為近最高,大度為近最卑。測得最高在實沈宮二十九度一十六分三十九秒,每年最高行一分二十二秒五十七微。又用兩測擇平行度,一當最高,一當最卑。距太陽極遠者,用平三角形及轉比例,推得兩心差為本天半徑千萬分之三十二萬零八百一十四,析為本輪半徑二十三萬一千九百六十二,均輪半徑八萬八千八百五十二。本法仍之。如圖己為地心,辛己為兩心差,戊為最高,庚為最卑,午未為金星平行,即太陽平行,甲丙為金星實行。又圖戊庚為平行,亥角為實行。
圖形尚無資料
一,求金星次輪半徑以定順逆。西人第谷測得金星次輪半徑為本天半徑千萬分之七百二十二萬四千八百五十。本法仍之。定本輪心行即太陽平行,均輪心從本輪最高左旋,為自行引數;次輪心從均輪最近右旋,為倍引數。星從次輪平遠右旋行伏見度。取金星次輪徑線不與地心參直,與本輪高卑線平行,徑線遠地心之端為平遠,近地心之端為平近,與太陰次輪均輪徑線平行者同。本輪、均輪面與黃道平行,次輪面有交角。如圖甲為地心,乙為本天半周,丙為本輪,丁為均輪,戊為次輪,己為平遠,庚為平近。
一,求水星平行度。古測定一萬六千八百零二日又十分日之四,水星行次輪會日退合日一百四十五次。置中積日分為實,星行次輪週數一百四十五為法,除之得周率。以每週三百六十度為實,周率除之,得每日水星伏見行。其本輪心平行如金星。本法仍之。
一,求水星最高及本輪、均輪半徑以定盈縮。明萬曆十三年,西人第谷如測金星法,測得水星最高在析木宮初度一十分一十七秒,每年最高行一分四十五秒一十四微。定兩心差為本天半徑千萬分之六十八萬二千一百五十五,析為本輪半徑五十六萬七千五百二十三,均輪半徑一十一萬四千六百三十二。本法仍之。
一,求水星次輪半徑以定順逆。西人第谷測得水星次輪半徑為本天半徑千萬分之三百八十五萬。本法仍之。定本輪心平行即太陽平行,均輪心從本輪最高左旋,為自行引數;次輪心從均輪最遠右旋,為三倍引數。星從次輪平遠右旋行伏見度。諸輪之面,與金星同。